Fast dose algorithm for generation of dose coverage probability for robustness analysis of fractionated radiotherapy.

نویسندگان

  • David Tilly
  • Anders Ahnesjö
چکیده

A fast algorithm is constructed to facilitate dose calculation for a large number of randomly sampled treatment scenarios, each representing a possible realisation of a full treatment with geometric, fraction specific displacements for an arbitrary number of fractions. The algorithm is applied to construct a dose volume coverage probability map (DVCM) based on dose calculated for several hundred treatment scenarios to enable the probabilistic evaluation of a treatment plan.For each treatment scenario, the algorithm calculates the total dose by perturbing a pre-calculated dose, separately for the primary and scatter dose components, for the nominal conditions. The ratio of the scenario specific accumulated fluence, and the average fluence for an infinite number of fractions is used to perturb the pre-calculated dose. Irregularities in the accumulated fluence may cause numerical instabilities in the ratio, which is mitigated by regularisation through convolution with a dose pencil kernel.Compared to full dose calculations the algorithm demonstrates a speedup factor of ~1000. The comparisons to full calculations show a 99% gamma index (2%/2 mm) pass rate for a single highly modulated beam in a virtual water phantom subject to setup errors during five fractions. The gamma comparison shows a 100% pass rate in a moving tumour irradiated by a single beam in a lung-like virtual phantom. DVCM iso-probability lines computed with the fast algorithm, and with full dose calculation for each of the fractions, for a hypo-fractionated prostate case treated with rotational arc therapy treatment were almost indistinguishable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Bolus Frequency and Its Thickness in Postmastectomy Three-dimensional Conformal Radiotherapy on Skin Dose for Superposition Algorithm

Introduction: The postmastectomy radiotherapy uses bolus to improve the coverage close to the skin; however, it needs to be removed in case of severe skin toxicity. This study investigated the effect of bolus parameters (i.e., frequency and thickness) for the superposition algorithm on skin dose in postmastectomy three-dimensional conformal radiotherapy (3D-CRT). <str...

متن کامل

Evaluating Performance of Algorithms in Lung IMRT: A Comparison of Monte Carlo, Pencil Beam, Superposition, Fast Superposition and Convolution Algorithms

Background: Inclusion of inhomogeneity corrections in intensity modulated small fields always makes conformal irradiation of lung tumor very complicated in accurate dose delivery.Objective: In the present study, the performance of five algorithms via Monte Carlo, Pencil Beam, Convolution, Fast Superposition and Superposition were evaluated in lung cancer Intensity Modulated Radiotherapy plannin...

متن کامل

Point Dose Measurement for Verification of Treatment Planning System using an Indigenous Heterogeneous Pelvis Phantom for Clarkson, Convolution, Superposition, and Fast Superposition Algorithms

Background: Nowadays, advanced radiotherapy equipment includes algorithms to calculate dose. The verification of the calculated doses is important to achieve accurate results. Mostly homogeneous dosimetric phantoms are available commercially which do not mimic the actual patient anatomy; therefore, an indigenous heterogeneous pelvic phantom mimicking actual human pelvic region has been used to ...

متن کامل

3-Dimensional conformal radiotherapy versus intensity modulated radiotherapy for localized prostate cancer: Dosimetric and radiobiologic analysis

 Background: To analyze the dosimetric and radio biologic advantages between intensity modulated radiotherapy (IMRT) and 3 dimensional conformal radiotherapy (3DCRT) and selection of optimal photon energy for IMRT treatments. Material and methods: 24 patients with localized prostate carcinoma were planned for 3DCRT and IMRT techniques. Radiation dose of 54 Gy with 2 Gy/fraction, was planned to ...

متن کامل

Dosimetric Study of Tissue Heterogeneity Correction for Breast Conformal Radiotherapy

Introduction: Heterogeneity correction is an important parameter in dose calculation for cancer patients where it may be cause inaccuracy in dose calculation as a result of different densities of patients. This study studied the impact of dose calculation of breast cancer patients with and without heterogeneity correction. Material and Methods: Twenty breast cancer patients were treated with Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 60 14  شماره 

صفحات  -

تاریخ انتشار 2015